skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ujah, Victoria C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of porphyrin analogues with fused 1,10-phenanthroline units were synthesized. The proton NMR spectra for phenanthroline-fused heteroporphyrins showed significantly upfield shifted meso-proton resonances compared to related porphyrinoid systems and the peaks corresponding to alkyl substituents directly attached to these macrocycles were also observed further upfield. These results indicate that the presence of the phenanthroline unit leads to reduced diatropicity, but the internal NH resonance was also further upfield, a result that is inconsistent with this interpretation. A phenanthrene-fused carbaporphyrin gave an unexpectedly upfield singlet for the internal Cāˆ’H at nearly āˆ’9 ppm, while the NH protons appeared at āˆ’6.8 ppm. These unusual chemical shifts again imply enhanced diatropicity but the reduced downfield shifts for the external protons indicates that the aromatic ring current has been significantly reduced. Similar results were obtained for phenanthroline-fused oxybenzi- and oxypyriporphyrins. Detailed analyses of the spectroscopic properties for these systems are reported and protonation studies were conducted. The conjugation pathways and aromatic properties were computationally analyzed using nucleus independent chemical shifts (NICS) and anisotropy of induced current density plots. 
    more » « less
    Free, publicly-accessible full text available January 10, 2026